Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices

نویسندگان

  • X. N. Liu
  • G. L. Huang
  • G. K. Hu
چکیده

In continuummechanics, the non-centrosymmetric micropolar theory is usually used to capture the chirality inherent in materials. However, when reduced to a two dimensional (2D) isotropic problem, the resulting model becomes non-chiral. Therefore, influence of the chiral effect cannot be properly characterized by existing theories for 2D chiral solids. To circumvent this difficulty, based on reinterpretation of isotropic tensors in the 2D case, we propose a continuum theory to model the chiral effect for 2D isotropic chiral solids. A single material parameter related to chirality is introduced to characterize the coupling between the bulk deformation and the internal rotation, which is a fundamental feature of 2D chiral solids. Coherently, the proposed continuum theory is applied for the homogenization of a triangular chiral lattice, from which the effective material constants of the lattice are analytically determined. The unique behavior in the chiral lattice is demonstrated through the analyses of a static tension problem and a plane wave propagation problem. The results, which cannot be predicted by the non-chiral model, are verified by the exact solution of the discrete model. & 2012 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wave Propagation and Band-gap Characteristics of Chiral Lattices

Plane wave propagation in a chiral lattice is investigated through the application of Bloch’s theorem. Two-dimensional dispersion relations are estimated and analyzed to illustrate peculiar properties of chiral or non-centrosymmetric configurations and investigate the directional behavior of wave propagation for varying geometric parameters. Special attention is devoted to the determination of ...

متن کامل

Auxiliary Potentials In Chiral Media

In the present paper, the expressions for scalar and vector potentials in lossless isotropic chiral media are analyzed. Propagating eigenvalues of these potentials are then obtained. Furthermore by decomposition of sources and fields in a chiral medium, we introduce the auxiliary right-and left-handed potentials and find the associated fields. These potentials are used to solve the problem of a...

متن کامل

Numerical Investigation of Size and Structure Effect on Tensile Characteristics of Symmetric and Asymmetric CNTs

In this research, the influence of structure on the tensile properties of single- walled carbon nanotubes (CNTs) is evaluated using molecular mechanics technique and finite element method. The effects of diameter, length and chiral angle on elastic modulus and Poisson’s ratio of armchair, zigzag and chiral structures are investigated. To simulate the CNTs, a 3D FEM code is developed using the A...

متن کامل

Plane Wave Reflection and Transmission from Uni- and Bi-Axial Chiral Slabs

In this paper, the propagation of electromagnetic waves through an infinite slab of uni- or bi- axial chiral medium is analytically formulated for an arbitrary incidence using 4×4 matrix method. In this powerful method, a state vector differential equation is extracted whose solution is given in terms of a transition matrix relating the tangential components of electric and magnetic fields at t...

متن کامل

Third-rank piezoelectricity in isotropic chiral solids

The highest symmetry in which piezoelectricity was thought to occur is cubic. Here it is shown that third rank piezoelectricity can occur in isotropic chiral solids. Polarization is coupled via an isotropic third rank tensor to the antisymmetric part of the stress. Asymmetric stress can occur if balanced by moments distributed over area or volume. Such moments occur in heterogeneous solids in w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012